

1. Product description

The most efficient mounting system for pipes, cables and many other applications. Diameter dimensions ranging from 8 to 64 mm for the indoor area.

2. Application areas

- Electrical installation of all kinds in the indoor area
- Installation technology
- Installations within the chemical industry
- Sanitary installations / hot and cold water pipes

3. Features

- One-piece, self locking plastic pipe clamp
- Tool-free installation system
- Very high dynamic load and stress corrosion crack stability
- Very low moisture absorption
- Chloride- and weather resistant
- UV resistant (for the exterior)
- Wide range of mounting temperature from -25°C to +90°C
- Mounting with metrical or wood screws
- Approved by: KIWA, UL (1565/2043)
- 100 % made in Switzerland

4. Material data

Material quality

Density at +20 °C

Elongation at yield

E-Modulus in tension

Water absorption at 23 °C

Moisture absorption (23 °C / 50 % r.F.)

Polymerblend
1.21 g/cm³

5 %

2100 MPa

0.50 %

0.50 %

Fixing Technology

Egli, Fischer & Co. Ltd., Zurich

1/2015

4. Material data (cont.)

Dielectric strength 32 kV/mm

Weather proof -25 °C up to +90 °C

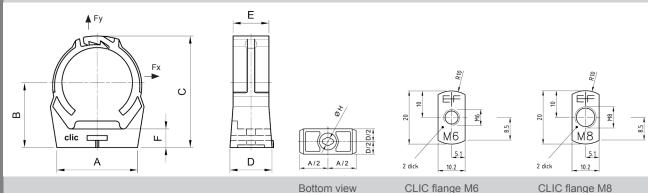
Maximum service temperature short term +120 °C
Maximum service temperature long term +90 °C

Flammability HB according to UL 94

 $\begin{array}{ll} \mbox{Impact value (Charpy, +23 °C)} & 56 \, \mbox{kJ/m}^2 \\ \mbox{Impact value (Charpy, -30 °C)} & 29 \, \mbox{kJ/m}^2 \end{array}$

Halogen free as per IEC 754-2

Petrol, diesel, oil resistant
Corrosion resistant
Chloride salt resistant


UV stabilized as per ISO 4892-2 Standard colours light grey (similar to RAL 7035)

5. Technical data

Туре	Clamping ra	ange [mm]	e [mm] A [mm]		C [mm]	D [mm]	E [mm]	F [mm]	H*		Breaking load [N]
	min.	max.							wood [mm]	metric	Fy/Fx**
8	7.8	9.5	17.1	17.5	26.4	17.1	14.5	7.5	3.5	M6	450
10	9.5	11.8	17.1	17.5	26.2	17.1	14.5	7.5	3.5	M6	470
12	11.8	14.3	20.2	19.5	28.3	17.2	14.5	7.5	3.5	M6	500
15	14.3	16.8	20.6	18.8	32.0	17.1	14.5	7.5	3.5	M6	650
17	16.8	19.5	22.5	23.7	35.4	19.5	16.0	7.8	4.5	M6	700
20	19.5	21.8	24.8	24.9	39.4	20.0	16.3	7.8	4.5	M6	750
22	21.8	24.8	27.8	26.0	42.0	20.0	16.5	7.8	4.5	M6	800
25	24.8	27.8	30.4	28.0	45.1	20.0	17.0	8.8	4.5	M6	900
28	27.8	31.2	33.4	31.7	48.9	20.2	17.0	8.8	4.5	M6	950
32	31.2	35.5	38.0	34.5	54.4	21.0	17.5	9.0	4.5	M6 / M8	1100
36	35.5	39.5	41.8	36.5	59.4	21.0	18.0	9.1	4.5	M6 / M8	1200
40	39.5	43.5	46.2	38.2	64.2	21.0	18.6	9.4	4.5	M6 / M8	1350
47	46.5	50.5	53.5	43.0	72.8	22.0	19.5	9.8	4.5	M6 / M8	1400
51	50.5	55.5	58.6	46.8	78.7	23.0	20.0	10.2	4.5	M6 / M8	1500
59	58.5	64.0	66.3	52.0	88.2	23.2	21.0	10.7	4.5	M6 / M8	1600

^{*} H = screw diameter; wood screw (wood) / metal screw (metric)

^{**} with screw DIN 96 at +20 °C, safety factor must be considered!

1/2015

15 3

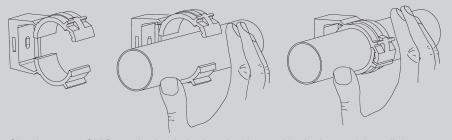
6. Selection guide

Туре	Steel pipe		Copper pipe	Cast iron pipe	PE pipe	PVC pipe	Cable-ducts	Coaxial cable	Certification		Breaking load [N]
	mm	inch	mm	mm	mm	mm	metric measures M	inch	Kiwa	UL	Fy/Fx*
8							8			✓	450
10			10				10		✓	✓	470
12	13.5	1/4"	12				12		✓	✓	500
15			15			16	16	1/2"	✓	✓	650
17	17.2	3/8"	18						✓	✓	700
20	21.3	1/2"				20	20	5/8"	✓	✓	750
22			22						✓	✓	800
25	26.9	3/4"				25	25		✓	✓	900
28			28					7/8"	✓	✓	950
32	33.7	1"	35		32	32	32		✓	✓	1100
36								11/4"	✓	✓	1200
40	42.4	11/4"	42		40		40		✓	✓	1350
47	48.3	1 1/2"		48	50	50	50	1 1 1/8"	✓	✓	1400
51			54						✓	✓	1500
59	60.3	2"	64			63				✓	1600

^{*} with screw DIN 96 at +20 °C, safety factor must be considered!

7. Chemical resistance

Material	Concentration	Resistance at +23 °C	Material	Concentration	Resistance at +23 °C	Material	Concentration	Resistance at +23 °C
Acetic acid	5%	••	Ethyl ether		•••	Perchloric acid		•
Acetone		•	Ethylene oxide		•••	Petroleum ether		•••
Acetylene		•••	Fatty acide		••	Phosphoric acid	10 %	•••
Ammonia	liquid	••	Fatty alcohol		•••	Potassium hypochlorite		•••
Benzine		•••	Formic acide	10 %	•••	Silicon oils		•••
Brake fluid		•••	Glycerine		•••	Sodium hydroxide	10 %	•
Butane		•••	Glycol		•••	Soldering water		••
Butanol		••	Glysantine		•••	Styrol		••
Butyl acetate		••	Heating oil		•••	Sulphuric acid	10 %	•••
Carbon monoxide		•••	Heptane, Hexane		•••	Tetradydrofurene		•
Carbon tetrachloride		•	Hydraulic oil		••	Toluene		••
Carbonic acide		•••	Hydrochloric acid	10 %	•••	Transmission oil		•••
Caustic potash	10 %	•	Hydrogen fluoride		••	Trichlorethane		•
Chlorbenzene		•	Inert gas		•••	Trychlorethylene		•
Chlorine gas		•	Iso-octane		•••	Turpentine		••
Chloroform		•	Isopropanol		•••	Turpentine oil replacem.		••
Citric acid	10%	•••	Ketone aliphatic		•	Xylene		••
Decalin		••	Lacquer		•••			
Dibutylphthalate		••	Methanol		•••			
Diesel fuel		•••	Methyene chloride		•			
Dimethyl formamide		•	Mineral oil		•••			
Dimethylether		••	Naphaline		••			
Dioctylphthalate		••	Nitric acid	10 %	••			
Dioxan		•	Nitrohydrochloric acid		•			
Engine oil		•••	Oleum		•			
Ethanol		•••	Ozone		•			
Ethyl acetate		••	Paraffin		•••			


^{●●●} resistant | ●● limited resistance | ● not resistant

1/2015

4

8. Installation/mounting

Simply mount CLIC, push pipe in by hand, grips and locks by applying slight pressure. To open: unlock the CLIC latch with screwdriver.

Examples of concrete base-materials

Examples of brickwork base-materials

9. Testings/authorizations/specifications/compliance

KIWA UL REACH, RoH

10. Safety data sheet

not required

1/2015

5

11. Manufacturer/brand/production

Egli, Fischer & Co. Ltd., Zurich

Gotthardstrasse 6 | Post Box 2265 | 8022 Zurich | Switzerland

CLIC is a registered international trademark of Egli Fischer and is 100 % Swiss made. The CLIC technology is protected by Swiss and international patents held by Egli Fischer.

clic

12. Accessories

Further accessories, e.g. spacers, base plates for multiple mountings, are available at the EF Shop (online) or are listed in the EF catalogue (print or PDF).

13. Links/downloads

For further information:

EF Shop http://shop.efco.ch
EF Website http://www.efco.ch

CLIC-Website http://www.clic-original.com

The recommendations and data given are based on our experience to date and are standard values. No liability can be assumed in connection with their usage and processing. In individual cases the chemical resistance has to be verified by your own testings.

For further technical information please refer to Egli Fischer.