Material: LiNNOTAMGLiDE

Short description of Material:

LiNNOTAMGLIDE is a LiNNOTAM with embedded, fine distributed oil. LiNNOTAMGLIDE has self-lubricating properties and a excelent wear resistance with a low coefficient of friction.

Application examples:

- Gears
- Sliding bearings
- Sliding strips & -plates
- Castors
- Teleskopic guide
- chain guiding strips / chain deflections

Colours: black (other colors on request)

Mechanical values		Dry / Humid	
Density	ISO 1183	1,14	g/cm³
Yield stress	ISO 527	80 / 55	MPa
Elongtion due to tearing	ISO 527	50 / 120	%
Modulus of elasticity resulting from tensile test	ISO 527	2.800 / 1.700	MPa
Modulus of elasticity resulting from bending test	ISO 178	3.000 / 1.900	MPa
Flexural strength	ISO 178	135 / 55	MPa
Impact strength ¹⁾	ISO 179	o.B / w.b.	KJ/m²
Notched-bar impact strength	ISO 179	>5 / >15	KJ/m²
Ball indentation hardness H _{358/30}	ISO 2039-1	150 / 100	MPa
Creep rate stress at 1% elongation ²⁾	DIN 53 444	>7	MPa
Sliding friction coefficient against steel (dry running) ³⁾	-	0,15 / 0,2	-
Sliding wear against steel (dry running) ³⁾	/-/	0,03	μm/km
Thermal values			
Melting temperature	ISO 3146	+220	°C
Thermal conductivity	DIN 52 612	0,23	W/(K*m)
Specific thermal capacity	-	1,7	J/(g*K)
Coefficient of thermal expansion ⁴⁾	-	7-8	10 ⁻⁵ *K ⁻¹
Operating temperature range (longterm) ⁵⁾	-	-40 / +105	°C
Operating temperature range(short-term) ⁵⁾	-	+160	°C
Fire behaviour	UL 94	НВ	-
Electrical values			
Dielectric constant ⁶⁾	IEC 250	3,7 / -	-
Dieelectric loss factor ⁶⁾	IEC 250	0,03 / -	-
Specific volume resistance	IEC 93	10 ¹⁵ / 10 ¹²	Ω
Surface resistance	IEC 93	10 ¹³ / 10 ¹²	Ω*cm
Dieelctric strength	IEC 243	50 / 20	KV/mm
Creep current resistance	IEC 112	CTI 600	100
Miscellaneous data			
Moisture absorption in normal climate until saturated	DIN 53 715	1,8	%
Water absorption until saturated	ISO 62	5,5	%

 $^{^{1)}}$ Measured with a pendulum impact testing machine 0,1 DIN 51 222

P = 0,05 Mpa; V = 0,6m/s; t = 60 °C near runing surface

w.b. = without breakage 1 Mpa = 1 N/mm² 1 g/cm³ = 1.000kg/m³ 1 kV/mm = 1 MV/m

Licharz GmbH

Industriepark Nord 15

D - 53567 Buchholz

Telefon: ++49 (0) 26 83 / 9 77 - 0 Telefax: ++49 (0) 2683 / 9 77 - 111

Internet: www.licharz.de
E-Mail: info@licharz-mail.de

²⁾ Tension resulting in 1% total elongtion after 1.000h

³⁾ Against steel, hardened and ground

 $^{^{\}rm 4)}$ For a temperature range of + 23 °C up to + 60 °C

⁵⁾ Experience values established with finished parts that are not under any stress in heated air, depending on the type and form of heat exposure, short-term = max. 1 h, long-term = months

⁶⁾ at 10⁶ Hz